Turbulence structure above a vegetation canopy
نویسندگان
چکیده
We compare the turbulence statistics of the canopy/roughness sublayer (RSL) and the inertial sublayer (ISL) above. In the RSL the turbulence is more coherent and more efficient at transporting momentum and scalars and in most ways resembles a turbulent mixing layer rather than a boundary layer. To understand these differences we analyse a large-eddy simulation of the flow above and within a vegetation canopy. The three-dimensional velocity and scalar structure of a characteristic eddy is educed by compositing, using local maxima of static pressure at the canopy top as a trigger. The characteristic eddy consists of an upstream head-down sweep-generating hairpin vortex superimposed on a downstream head-up ejection-generating hairpin. The conjunction of the sweep and ejection produces the pressure maximum between the hairpins, and this is also the location of a coherent scalar microfront. This eddy structure matches that observed in simulations of homogeneous-shear flows and channel flows by several workers and also fits with earlier field and wind-tunnel measurements in canopy flows. It is significantly different from the eddy structure educed over smooth walls by conditional sampling based only on ejections as a trigger. The characteristic eddy was also reconstructed by empirical orthogonal function (EOF) analysis, when only the dominant, sweep-generating head-down hairpin was recovered, prompting a re-evaluation of earlier results based on EOF analysis of wind-tunnel data. A phenomenological model is proposed to explain both the structure of the characteristic eddy and the key differences between turbulence in the canopy/RSL and the ISL above. This model suggests a new scaling length that can be used to collapse turbulence moments over vegetation canopies.
منابع مشابه
The influence of vegetation on turbulence and flow velocities in European salt-marshes
Flow hindrance by salt-marsh vegetation is manifested in the structure of the tidal current; it has a significant impact on sediment transport and causes increased sediment accretion. The flow characteristics in 3 different vegetation types (Spartina maritima, Sp. anglica and Salicornia/Suaeda maritima) were measured on 3 salt-marshes in Portugal and England. Skimming flow develops above the Sp...
متن کاملInteraction between flow, transport and vegetation spatial structure
This paper summarizes recent advances in vegetation hydrodynamics and uses the new concepts to explore not only how vegetation impacts flow and transport, but also how flow feedbacks can influence vegetation spatial structure. Sparse and dense submerged canopies are defined based on the relative contribution of turbulent stress and canopy drag to the momentum balance. In sparse canopies turbule...
متن کاملMixing Layers and Coherent Structures in Vegetated Aquatic Flows
Submerged aquatic vegetation can dramatically alter the drag, turbulence and diffusivity characteristics of flow in aquatic systems. As a result, the diffusion and advection of contaminants and particulates are greatly influenced. However, modeling efforts generally treat submerged vegetation merely as a source of drag. This study explores the idea that flow through submerged aquatic vegetation...
متن کاملEffects of Vegetation Canopy Density and Bank Angle on Near-Bank Patterns of Turbulence and Reynolds Stresses
Vegetation growing on the surface of a streambank has been shown to alter the shear stresses applied to the boundary, but basic questions remain regarding the influence of vegetation and streambank configurations on near-bank hydraulics. In the present study, Froudescaled flume experiments were used to investigate how changes in vegetation density (ratio of frontal area to channel area, includi...
متن کاملRisks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach
Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under ca...
متن کامل